Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.280
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338935

RESUMO

Bafilomycin A1 inhibits V-type H+ ATPases on the molecular level, which acidifies endo-lysosomes. The main objective of the study was to assess the effect of bafilomycin A1 on Ca2+ content, NAADP-induced Ca2+ release, and ATPase activity in rat hepatocytes and human colon cancer samples. Chlortetracycline (CTC) was used for a quantitative measure of stored calcium in permeabilized rat hepatocytes. ATPase activity was determined by orthophosphate content released after ATP hydrolysis in subcellular post-mitochondrial fraction obtained from rat liver as well as from patients' samples of colon mucosa and colorectal cancer samples. In rat hepatocytes, bafilomycin A1 decreased stored Ca2+ and prevented the effect of NAADP on stored Ca2+. This effect was dependent on EGTA-Ca2+ buffers in the medium. Bafilomycin A1 significantly increased the activity of Ca2+ ATPases of endoplasmic reticulum (EPR), but not plasma membrane (PM) Ca2+ ATPases in rat liver. Bafilomycin A1 also prevented the effect of NAADP on these pumps. In addition, bafilomycin A1 reduced Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in the subcellular fraction of rat liver. Concomitant administration of bafilomycin A1 and NAADP enhanced these effects. Bafilomycin A1 increased the activity of the Ca2+ ATPase of EPR in the subcellular fraction of normal human colon mucosa and also in colon cancer tissue samples. In contrast, it decreased Ca2+ ATPase PM activity in samples of normal human colon mucosa and caused no changes in colon cancer. Bafilomycin A1 decreased Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in normal colon mucosa samples and in human colon cancer samples. It can be concluded that bafilomycin A1 targets NAADP-sensitive acidic Ca2+ stores, effectively modulates ATPase activity, and assumes the link between acidic stores and EPR. Bafilomycin A1 may be useful for cancer therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , ATPases Vacuolares Próton-Translocadoras , Humanos , Ratos , Animais , Macrolídeos/farmacologia , Frações Subcelulares/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Fígado/metabolismo , Cálcio/metabolismo
2.
Nat Methods ; 21(1): 60-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036857

RESUMO

Although the subcellular dynamics of RNA and proteins are key determinants of cell homeostasis, their characterization is still challenging. Here we present an integrative framework to simultaneously interrogate the dynamics of the transcriptome and proteome at subcellular resolution by combining two methods: localization of RNA (LoRNA) and a streamlined density-based localization of proteins by isotope tagging (dLOPIT) to map RNA and protein to organelles (nucleus, endoplasmic reticulum and mitochondria) and membraneless compartments (cytosol, nucleolus and cytosolic granules). Interrogating all RNA subcellular locations at once enables system-wide quantification of the proportional distribution of RNA. We obtain a cell-wide overview of localization dynamics for 31,839 transcripts and 5,314 proteins during the unfolded protein response, revealing that endoplasmic reticulum-localized transcripts are more efficiently recruited to cytosolic granules than cytosolic RNAs, and that the translation initiation factor eIF3d is key to sustaining cytoskeletal function. Overall, we provide the most comprehensive overview so far of RNA and protein subcellular localization dynamics.


Assuntos
Retículo Endoplasmático , RNA , RNA/genética , RNA/metabolismo , Frações Subcelulares/metabolismo , Retículo Endoplasmático/metabolismo , Proteoma/análise
3.
Anal Biochem ; 687: 115445, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38135241

RESUMO

REAP+ is an enhanced version of the rapid, efficient, and practical (REAP) method designed for the isolation of nuclear fractions. This improved version, REAP+, enables fast and effective extraction of mitochondria, cytoplasm, and nuclei. The mechanical cell disruption process has been optimized to cerebral tissues, snap-frozen liver, and HT22 cells with remarkable fraction enrichment. REAP+ is well-suited for samples containing minimal protein quantities, such as mouse hippocampal slices. The method was validated by Western blot and marker enzyme activities, such as LDH and G6PDH for the cytoplasmic fraction and succinate dehydrogenase and cytochrome c oxidase for the mitochondrial fraction. One of the outstanding features of this method is its rapid execution, yielding fractions within 15 min, allowing for simultaneous preparation of multiple samples. In essence, REAP+ emerges as a swift, efficient, and practical technique for the concurrent isolation of nuclei, cytoplasm, and mitochondria from various cell types and tissues. The method would be suitable to study the multicompartment translocation of proteins, such as metabolic enzymes and transcription factors migrating from cytosol to the mitochondria and nuclei. Moreover, its compatibility with small samples, such as hippocampal slices, and its potential applicability to human biopsies, highlights the potential application in medical research.


Assuntos
Núcleo Celular , Mitocôndrias , Humanos , Camundongos , Animais , Fracionamento Celular/métodos , Mitocôndrias/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Frações Subcelulares/metabolismo
4.
Sensors (Basel) ; 23(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005402

RESUMO

Protein is one of the primary biochemical macromolecular regulators in the compartmental cellular structure, and the subcellular locations of proteins can therefore provide information on the function of subcellular structures and physiological environments. Recently, data-driven systems have been developed to predict the subcellular location of proteins based on protein sequence, immunohistochemistry (IHC) images, or immunofluorescence (IF) images. However, the research on the fusion of multiple protein signals has received little attention. In this study, we developed a dual-signal computational protocol by incorporating IHC images into protein sequences to learn protein subcellular localization. Three major steps can be summarized as follows in this protocol: first, a benchmark database that includes 281 proteins sorted out from 4722 proteins of the Human Protein Atlas (HPA) and Swiss-Prot database, which is involved in the endoplasmic reticulum (ER), Golgi apparatus, cytosol, and nucleoplasm; second, discriminative feature operators were first employed to quantitate protein image-sequence samples that include IHC images and protein sequence; finally, the feature subspace of different protein signals is absorbed to construct multiple sub-classifiers via dimensionality reduction and binary relevance (BR), and multiple confidence derived from multiple sub-classifiers is adopted to decide subcellular location by the centralized voting mechanism at the decision layer. The experimental results indicated that the dual-signal model embedded IHC images and protein sequences outperformed the single-signal models with accuracy, precision, and recall of 75.41%, 80.38%, and 74.38%, respectively. It is enlightening for further research on protein subcellular location prediction under multi-signal fusion of protein.


Assuntos
Núcleo Celular , Proteínas , Humanos , Imuno-Histoquímica , Proteínas/análise , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Bases de Dados de Proteínas , Frações Subcelulares/química , Frações Subcelulares/metabolismo
5.
Methods Mol Biol ; 2654: 159-167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106182

RESUMO

Subcellular fractionation is an important tool used to separate intracellular organelles, structures or proteins. Here, we describe a stepwise protocol to isolate two types of lytic granules, multicore (MCG), and single core (SCG), from primary murine CTLs. We used cell disruption by nitrogen cavitation followed by separation of organelles via discontinuous sucrose density gradient centrifugation. Immunoisolation with a Synaptobrevin 2 antibody attached to magnetic beads was then used to harvest Synaptobrevin 2 positive granules for immunoblotting, mass spectrometry, electron, and light microscopy.


Assuntos
Proteínas , Proteína 2 Associada à Membrana da Vesícula , Camundongos , Animais , Fracionamento Celular/métodos , Proteína 2 Associada à Membrana da Vesícula/análise , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas/metabolismo , Técnicas Citológicas , Organelas , Centrifugação com Gradiente de Concentração/métodos , Grânulos Citoplasmáticos , Frações Subcelulares/metabolismo
6.
Adv Sci (Weinh) ; 10(3): e2203480, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461702

RESUMO

Characterization of the subcellular distribution of RNA is essential for understanding the molecular basis of biological processes. Here, the subcellular nanopore direct RNA-sequencing (DRS) of four lung cancer cell lines (A549, H1975, H358, and HCC4006) is performed, coupled with a computational pipeline, Low-abundance Aware Full-length Isoform clusTEr (LAFITE), to comprehensively analyze the full-length cytoplasmic and nuclear transcriptome. Using additional DRS and orthogonal data sets, it is shown that LAFITE outperforms current methods for detecting full-length transcripts, particularly for low-abundance isoforms that are usually overlooked due to poor read coverage. Experimental validation of six novel isoforms exclusively identified by LAFITE further confirms the reliability of this pipeline. By applying LAFITE to subcellular DRS data, the complexity of the nuclear transcriptome is revealed in terms of isoform diversity, 3'-UTR usage, m6A modification patterns, and intron retention. Overall, LAFITE provides enhanced full-length isoform identification and enables a high-resolution view of the RNA landscape at the isoform level.


Assuntos
Transcriptoma , Reprodutibilidade dos Testes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Isoformas de Proteínas/genética , Transcriptoma/genética , Frações Subcelulares/metabolismo
7.
Nat Commun ; 13(1): 5948, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216816

RESUMO

The steady-state localisation of proteins provides vital insight into their function. These localisations are context specific with proteins translocating between different subcellular niches upon perturbation of the subcellular environment. Differential localisation, that is a change in the steady-state subcellular location of a protein, provides a step towards mechanistic insight of subcellular protein dynamics. High-accuracy high-throughput mass spectrometry-based methods now exist to map the steady-state localisation and re-localisation of proteins. Here, we describe a principled Bayesian approach, BANDLE, that uses these data to compute the probability that a protein differentially localises upon cellular perturbation. Extensive simulation studies demonstrate that BANDLE reduces the number of both type I and type II errors compared to existing approaches. Application of BANDLE to several datasets recovers well-studied translocations. In an application to cytomegalovirus infection, we obtain insights into the rewiring of the host proteome. Integration of other high-throughput datasets allows us to provide the functional context of these data.


Assuntos
Proteoma , Proteômica , Teorema de Bayes , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos , Frações Subcelulares/metabolismo
8.
Sci Rep ; 12(1): 17300, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243751

RESUMO

Protein kinases and their substrates form signaling networks partitioned across subcellular compartments to facilitate critical biological processes. While the subcellular roles of many individual kinases have been elucidated, a comprehensive assessment of the synaptic subkinome is lacking. Further, most studies of kinases focus on transcript, protein, and/or phospho-protein expression levels, providing an indirect measure of protein kinase activity. Prior work suggests that gene expression levels are not a good predictor of protein function. Thus, we assessed global serine/threonine protein kinase activity profiles in synaptosomal, nuclear, and cytosolic fractions from rat frontal cortex homogenate using peptide arrays. Comparisons made between fractions demonstrated differences in overall protein kinase activity. Upstream kinase analysis revealed a list of cognate kinases that were enriched in the synaptosomal fraction compared to the nuclear fraction. We identified many kinases in the synaptic fraction previously implicated in this compartment, while also identifying other kinases with little or no evidence for synaptic localization. Our results show the feasibility of assessing subcellular fractions with peptide activity arrays, as well as suggesting compartment specific activity profiles associated with established and novel kinases.


Assuntos
Peptídeos , Proteínas Quinases , Animais , Peptídeos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Ratos , Serina/metabolismo , Frações Subcelulares/metabolismo , Treonina/metabolismo
9.
Methods Cell Biol ; 170: 47-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811103

RESUMO

Brain tumor stem cells (BTSCs) are a rare population of self-renewing stem cells that are cultured as spheres and are often slow growing compared to other mammalian cell lines. Analysis of BTSC proteome requires careful handling as well as techniques that can be applied to small quantities of cell material. Subcellular fractionation is a widely used technique to assess protein localization. Although proteins are often destined to a defined cell compartment via a signal peptide such as mitochondrial or nuclear localization signals, the recruitment of a protein from one compartment to another can occur as a result of post-translational modification and/or structural variations in response to intracellular and extracellular stimuli. These events assign different functions to a protein making the study of protein localization a useful approach for better understanding of its role in disease progression. Sequential centrifugation remains a simple and versatile fractionation method for proteomic analysis. It can also be applied for diverse downstream applications such as multi-omics using pure nuclear fractions or metabolomic studies on isolated mitochondria. In this chapter, we describe our optimized protocol for subcellular fractionation of BTSC spheres in which we use a commercially available kit with additional centrifugation steps. We provide details on BTSC maintenance and handling, fractionation protocol and evaluation of fraction purity.


Assuntos
Células-Tronco Neoplásicas , Proteômica , Animais , Encéfalo/metabolismo , Fracionamento Celular/métodos , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Células-Tronco Neoplásicas/patologia , Proteoma/metabolismo , Proteômica/métodos , Frações Subcelulares/metabolismo
10.
Sci Rep ; 12(1): 10985, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768540

RESUMO

Subcellular organelles have long been an interest in biochemical research and drug development as the isolation of those organelles can help to probe protein functions and elucidate drug disposition within the cell. Usually, the purity of isolated subcellular organelle fractions was determined using immunoblot analysis of subcellular organelle marker proteins, which can be labor-intensive and lack reproducibility due to antibody batch-to-batch variability. As such, a higher throughput and more robust method is needed. Here, a UPLC-MRM-based targeted proteomic method was developed for a panel of human organelle marker proteins and used to profile a series of sucrose fractions isolated from the protein extract of human liver tissues. The method was validated by comparing to the traditional immunoblot and determining subcellular localization of three case study proteins (CYP3A4, FcRn, and ß2M) pertaining to the disposition of small molecule and biologic drugs. All three case study proteins were co-enriched with their corresponding subcellular protein marker, and complete recoveries were achieved from isolated fractions. This newly developed MRM method for the panel of human organelle marker proteins can potentially accelerate future intracellular drug disposition analysis and facilitate subcellular organelle quality assessment.


Assuntos
Organelas , Proteômica , Biomarcadores/metabolismo , Humanos , Fígado/metabolismo , Organelas/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes , Frações Subcelulares/metabolismo
11.
Environ Toxicol Chem ; 41(10): 2353-2364, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751451

RESUMO

Because of the persistence and high toxicity of benzo[a]pyrene (B[a]P), the bioaccumulation and detoxification mechanisms of B[a]P have been studied extensively at the tissue level; but the data at the subcellular level in bivalves have not been reported. The present study was conducted to investigate the effects of B[a]P exposure on bioaccumulation, detoxification, and biomacromolecular damage in gills, digestive glands, and their subcellular fractions of the scallop Chlamys farreri. The subcellular fraction contains cytoplasm, mitochondria, microsome, nucleus, cell membrane, and overall organelle. The results demonstrated that B[a]P accumulation showed a clear time-dose effect. Based on the time-dependent accumulation of B[a]P in subcellular fractions, we speculated that the intracellular migration order of B[a]P was cell membrane, organelle, and nucleus in turn. Considering the difference of B[a]P accumulation may be related to B[a]P metabolism, we have further confirmed that the activities of B[a]P metabolizing enzymes in scallop tissues and subcellular fractions were significantly tempted by B[a]P (p < 0.05), including 7-ethoxyresorufin O-deethylase (increased), glutathione-S-transferase (GST; decreased), and superoxide dismutase (increased). First, GST was detected in bivalve cytoplasm and microsome. Second, B[a]P exposure also caused biomacromolecules damage. The results demonstrated that mitochondria and microsome were more vulnerable to lipid peroxidation than cell membrane and nucleus. Taken together, the present study fills some of the gaps in our knowledge of the bioaccumulation and detoxification mechanisms of C. farreri exposed to B[a]P in subcellular fractions and deeply explores the transportation and the main metabolic and damage sites of polycyclic aromatic hydrocarbons (PAHs) in cells, which helped us to comprehensively understand the toxic mechanism of PAHs on bivalves. Environ Toxicol Chem 2022;41:2353-2364. © 2022 SETAC.


Assuntos
Bivalves , Pectinidae , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidade , Bioacumulação , Bivalves/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Pectinidae/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise
12.
Nucleic Acids Res ; 50(W1): W228-W234, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489069

RESUMO

The prediction of protein subcellular localization is of great relevance for proteomics research. Here, we propose an update to the popular tool DeepLoc with multi-localization prediction and improvements in both performance and interpretability. For training and validation, we curate eukaryotic and human multi-location protein datasets with stringent homology partitioning and enriched with sorting signal information compiled from the literature. We achieve state-of-the-art performance in DeepLoc 2.0 by using a pre-trained protein language model. It has the further advantage that it uses sequence input rather than relying on slower protein profiles. We provide two means of better interpretability: an attention output along the sequence and highly accurate prediction of nine different types of protein sorting signals. We find that the attention output correlates well with the position of sorting signals. The webserver is available at services.healthtech.dtu.dk/service.php?DeepLoc-2.0.


Assuntos
Sinais Direcionadores de Proteínas , Proteínas , Humanos , Proteínas/metabolismo , Eucariotos/metabolismo , Transporte Proteico , Idioma , Bases de Dados de Proteínas , Biologia Computacional , Frações Subcelulares/metabolismo
13.
J Biol Chem ; 298(3): 101675, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122791

RESUMO

A multienzyme metabolic assembly for human glucose metabolism, namely the glucosome, has been previously demonstrated to partition glucose flux between glycolysis and building block biosynthesis in an assembly size-dependent manner. Among three different sizes of glucosome assemblies, we have shown that large-sized glucosomes are functionally associated with the promotion of serine biosynthesis in the presence of epidermal growth factor (EGF). However, due to multifunctional roles of EGF in signaling pathways, it is unclear which EGF-mediated signaling pathways promote these large glucosome assemblies in cancer cells. In this study, we used Luminex multiplexing assays and high-content single-cell imaging to demonstrate that EGF triggers temporal activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in Hs578T cells. Subsequently, we found that treatments with a pharmacological inhibitor of ERK1/2, SCH772984, or short-hairpin RNAs targeting ERK1/2 promote the dissociation of large-sized assemblies to medium-sized assemblies in Hs578T cells. In addition, our Western blot analyses revealed that EGF treatment does not increase the expression levels of enzymes that are involved in both glucose metabolism and serine biosynthesis. The observed spatial transition of glucosome assemblies between large and medium sizes appears to be mediated by the degree of dynamic partitioning of glucosome enzymes without changing their expression levels. Collectively, our study demonstrates that EGF-ERK1/2 signaling pathways play an important role in the upregulation of large-sized glucosomes in cancer cells, thus functionally governing the promotion of glycolysis-derived serine biosynthesis.


Assuntos
Fator de Crescimento Epidérmico , Glucose , Sistema de Sinalização das MAP Quinases , Complexos Multienzimáticos , Fator de Crescimento Epidérmico/metabolismo , Glucose/metabolismo , Humanos , Complexos Multienzimáticos/metabolismo , Fosforilação , Serina/metabolismo , Frações Subcelulares/metabolismo
14.
Database (Oxford) ; 20222022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134877

RESUMO

The characterization of subcellular protein localization provides a basis for further understanding cellular behaviors. A delineation of subcellular localization of proteins on cytosolic membrane-bound organelles in human liver cancer cell lines (hLCCLs) has yet to be performed. To obtain its proteome-wide view, we isolated and enriched six cytosolic membrane-bound organelles in one of the hLCCLs (SK_HEP1) and quantified their proteins using mass spectrometry. The vigorous selection of marker proteins and a machine-learning-based algorithm were implemented to localize proteins at cluster and neighborhood levels. We validated the performance of the proposed method by comparing the predicted subcellular protein localization with publicly available resources. The profiles enabled investigating the correlation of protein domains with their subcellular localization and colocalization of protein complex members. A subcellular proteome database for SK_HEP1, including (i) the subcellular protein localization and (ii) the subcellular locations of protein complex members and their interactions, was constructed. Our research provides resources for further research on hLCCLs proteomics. Database URL:  http://www.igenetics.org.cn/project/PSL-LCCL/.


Assuntos
Neoplasias Hepáticas , Proteoma , Linhagem Celular , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Organelas , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Frações Subcelulares/metabolismo
15.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163493

RESUMO

This article examines the presence of the empirical tendency known as the Menzerath-Altmann Law (MAL) on protein secondary structures. MAL is related to optimization principles observed in natural languages and in genetic information on chromosomes or protein domains. The presence of MAL is examined on a non-redundant dataset of 4728 proteins by verifying significant, negative correlations and testing classical and newly proposed formulas by fitting the observed trend. We conclude that the lengths of secondary structures are specifically dependent on their number inside the protein sequence, while possibly reflecting the formula proposed in this paper. This behavior is observed on average but is individually avoidable and possibly driven by a latent cost function. The data suggest that MAL could provide a useful guiding principle in protein design.


Assuntos
Modelos Moleculares , Proteínas/química , Algoritmos , Bases de Dados de Proteínas , Estrutura Secundária de Proteína , Estatística como Assunto , Frações Subcelulares/metabolismo
16.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163494

RESUMO

Usher syndrome (USH) is a rare autosomal recessive disease characterized by the combination of hearing loss, visual impairment due to retinitis pigmentosa, and in some cases vestibular dysfunctions. Studies published in the 1980s reported that USH is associated with cellular radiosensitivity. However, the molecular basis of this particular phenotype has not yet been documented. The aim of this study was therefore to document the radiosensitivity of USH1-a subset of USH-by examining the radiation-induced nucleo-shuttling of ATM (RIANS), as well as the functionality of the repair and signaling pathways of the DNA double-strand breaks (DSBs) in three skin fibroblasts derived from USH1 patients. The clonogenic cell survival, the micronuclei, the nuclear foci formed by the phosphorylated forms of the X variant of the H2A histone (É£H2AX), the phosphorylated forms of the ATM protein (pATM), and the meiotic recombination 11 nuclease (MRE11) were used as cellular and molecular endpoints. The interaction between the ATM and USH1 proteins was also examined by proximity ligation assay. The results showed that USH1 fibroblasts were associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired DSB recognition but normal DSB repair, likely caused by a delayed RIANS, suggesting a possible sequestration of ATM by some USH1 proteins overexpressed in the cytoplasm. To our knowledge, this report is the first radiobiological characterization of cells from USH1 patients at both molecular and cellular scales.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Tolerância a Radiação/genética , Síndromes de Usher/enzimologia , Síndromes de Usher/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Clonais , Difosfonatos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Histonas/metabolismo , Humanos , Cinética , Proteína Homóloga a MRE11/metabolismo , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação
17.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163496

RESUMO

CCCH zinc finger proteins are a large protein family and are classified as either tandem CCCH zinc finger (TZF) or non-TZF proteins. The roles of TZF genes in several plants have been well determined, whereas the functions of many non-TZF genes in plants remain uncharacterized. Herein, we describe biological and molecular functions of AtC3H12, an Arabidopsis non-TZF protein containing three CCCH zinc finger motifs. AtC3H12 has orthologs in several plant species but has no paralog in Arabidopsis. AtC3H12-overexpressing transgenic plants (OXs) germinated slower than wild-type (WT) plants, whereas atc3h12 mutants germinated faster than WT plants. The fresh weight (FW) and primary root lengths of AtC3H12 OX seedlings were lighter and shorter than those of WT seedlings, respectively. In contrast, FW and primary root lengths of atc3h12 seedlings were heavier and longer than those of WT seedlings, respectively. AtC3H12 was localized in the nucleus and displayed transactivation activity in both yeast and Arabidopsis. We found that the 97-197 aa region of AtC3H12 is an important part for its transactivation activity. Detection of expression levels and analysis of Arabidopsis transgenic plants harboring a PAtC3H12::GUS construct showed that AtC3H12 expression increases as the Arabidopsis seedlings develop. Taken together, our results demonstrate that AtC3H12 negatively affects seed germination and seedling development as a nuclear transcriptional activator in Arabidopsis. To our knowledge, this is the first report to show that non-TZF proteins negatively affect plant development as nuclear transcriptional activators.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Germinação , Plântula , Sementes , Transativadores , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Transporte Proteico , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Frações Subcelulares/metabolismo , Fatores de Tempo , Transativadores/química , Transativadores/metabolismo , Ativação Transcricional/genética , Dedos de Zinco
18.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163676

RESUMO

RcNAC72, a key transcription factor that may respond to drought stress in Rosa chinensis 'Old Blush', was selected in our previous study. In the present study, we found that RcNAC72 is localized in the nucleus and is a transcriptional activator. RcNAC72 expression could be significantly induced by drought, low temperature, salt as well as abscisic acid (ABA) treatment. Analysis of the promoter revealed that multiple abiotic stress and hormone response elements were located in the promoter region. The promoter could respond to drought, low temperature, salt and ABA treatments to activate GUS gene expression. Overexpressing RcNAC72 in Arabidopsis thaliana enhanced sensitivity to ABA and tolerance to drought stress. Silencing of RcNAC72 by virus-induced gene silencing (VIGS) in rose leaves significantly reduced leaf water loss tolerance and leaf extension capacity. Physical interaction of RcNAC72 with RcDREB2A was shown by means of the yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. RcABF4 was demonstrated to be able to bind to the promoter of RcNAC72 by means of the yeast one-hybrid (Y1H) assay. These results provide new insights into the regulatory network of RcNAC72 response to drought stress in roses.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Secas , Proteínas de Plantas/metabolismo , Rosa/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Modelos Biológicos , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo
19.
J Med Chem ; 65(4): 3616-3631, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35152702

RESUMO

The discovery of novel photosensitizers with potent phototoxicity and desirable water solubility is an urgent task for photodynamic therapy. Herein, a series of amino acid-modified aza-BODIPY photosensitizers were synthesized and evaluated. These new PSs exhibited enhanced aqueous solubility, increased 1O2 generation efficiency, and an improved photo-dark toxicity ratio. Aspartic acid-modified PS of 1a, which possessed intense NIR absorption and high 1O2 quantum yield, demonstrated the most potent efficacy toward the investigated tumor cell lines without using an emulsifier. Subcellular localization, cell-based ROS production, and cell death pathway of 1a were studied. In vivo fluorescence imaging and ex vivo organ distribution assays manifested that 1a possessed reasonable distribution and clearance. In vivo PDT studies indicated that 1a revealed advantages over Ce6 and our previously optimized PS of BDP-4. It not only afforded an excellent PDT effect with a low drug dose under only single-time photoirradiation but also induced an antitumor immunological response.


Assuntos
Aminoácidos/química , Compostos de Boro/síntese química , Compostos de Boro/farmacologia , Melanoma/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Animais , Ácido Aspártico/química , Linhagem Celular Tumoral , Descoberta de Drogas , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biochem J ; 479(3): 445-462, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147164

RESUMO

Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.


Assuntos
Transportador de Glucose Tipo 4/fisiologia , Adipócitos/metabolismo , Animais , Membrana Celular/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacologia , Modelos Biológicos , Células Musculares/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...